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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1741

THEORETICAL _TIC STRESS DISTRIBUTIONS IN

CASSINIAN DOMES

By David A. Spera and Robert H. Johns

The geometric properties and elastic stress distributions in a family of

domes with constant thickness, temperature, internal pressure, and material prop-

erties are investigated, and results are presented in a form suitable for prelim-

inary design. The governing differential equations are solved by a finite-

difference technique, which is presented in detailed algebraic form for the

shells investigated and in matrix form for general shells of revolution.

Meridians of the domes considered are modified curves of Cassini and contain

two parameters that permit a wide range of shapes. Variations in dome curvature,

height_ area, and volume with these two parameters are calculated. Membrane

stress distributions and significant bending stresses are given for a class of

domes that close cylinders of equal thickness and have zero curvature at the

junction section. Complete stress distributions are found for several dome geom-

etries. In addition, a dome was fabricated and tested_ and good agreement be-

tween experimental and theoretical results was obtained. By utilizing the shape

flexibility of Cassinian domes, discontinuity stresses may be minimized through

judicious selection of shape parameters and wall thickness.

INTRODUCTION

As part of a general program to determine stresses in thin-walled shells of

revolution used in aircraft, missile_ and space vehicle structures_ a variety of

cylinder closures has been investigated (ref. i). In general, discontinuity

stresses in these shells were significant. The present work is an investigation

of a family of domes that show promise of reducing discontinuity effects.

Fi_gge (refs. 2 and 5) has proposed a series of domes generated by modified

curves of Cassini. These modified curves contain two parameters that permit a

wide variation in curvature throughout their lengths. Ellipses are included as

special cases. Because domes generated by these curves, hereinafter called

Cassinian domes, have a wide range of edge deformations under load, including

those of equal thickness membrane cylinders, they were selected for this investi-

gation.

References 2 and 5 present a membrane analysis of the Cassinian dome, which

was expanded upon in reference 4 to include a more detailed description of the



two-parameter characteristics of the shells. In these references, free-edge de-
flection is assumedto depend upon the meridional curvature only at the dome
boundary, and free-edge rotation is assumedto be zero. Although both these as-
sumptions were consistent with the membraneanalysis used, they were approxima-
tions that did not necessarily predict edge deformations with sufficient accu-
racy_ as noted in references 5 and 6. Bending momentsalso exist at the apex of
the dome, which maybe the critical region for design. With the limitations of
the membraneanalysis in mind, further study including bending effects seemed
necessary for a complete understanding of Cassinian domes.

In this investigation, stresses are computedusing the equations proposed
in reference 7 for a general thin-_alled shell of revolution. A finite-
difference solution of these equations is given in reference 8 in matrix notation
and is presented here in algebraic form for shells with constant thickness; tem-
perature, internal pressure, and material properties. Reference 9 presents addi-
tional details of this method of analysis] preliminary results of the work herein
are presented in reference i0.

The scope of this investigation includes calculation of detailed geometric
properties of Cassinian domes,membraneand significant principal and effective
stresses in a family of domesattached to cylinders of equal wall thickness, and
complete stress distributions for a selected dome. The family of domeshas zero
curvature at its junction section. Thus_ any abrupt change in curvature between
domeand cylinder is eliminated, and discontinuity stresses are greatly reduced.
In addition to this theoretical work, a small-scale Cassinian domewith an inte-
grally machined section of cylinder was tested, and the results are included in
reference lO and in this report.
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SYMBOLS

matrices, 2 × 2

radius of cylinder, in.

extensional rigidity_ Eh, ib/in.

f!exural rigidity, Eh3/12(l - v2), ib-in.

modulus of elasticity, psi

matrices_ 2 X i

radial stress resultant, ib/in.

thickness of shell wall; in.

dome station nearest to junction

boundary station

couple, Ib-in./in.
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Cassinian dome shape parameters

tangential stress resultant, ib/in.

internal Pressure , Ib/sq in.

transverse stress resultant_ !b/in.

radial coordinate to middle surface, in.

surface area of dome_ sq in.

meridional coordinate along middle surface, in.

radial deflection_ in.

axial stress resultant, ib/in.

volume of dome_ cu in.

axial coordinates to middle surface, in. (fig. i)

reference length_ in.

meridional rotation_ radians

coefficients

arc length from station

normal strain, in./in.

constants

load terms, (in.-ib)i/2

Poisson's ratio

s/_ 0

curvature, (in.)-i

normal stress, psi

meridional slope_ radians

j to Junction, in.

effective
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H radial

is inner surface

j station along shell meridian

max maximum

rain minimum

o apex_ r = 0

os outer surface

V axial

(9 circumferential

meridional

Superscripts:

junction

( )' differentiation with respect to

Solving equation (!) for x

GEOMETRY

The basic equation of the Cassinian domemeridian (ref. A and fig. I) is

(r 2 + n2x2)2 + 2ma2(r 2 - n2x 2) = a4(! + 2m) (1)

and for r_ explicitly_ gives

a_ m (_)2 _( (_)2x =-- - + 1 + m) Z - 4m (2a)
n

and

r = a -m - n 2 + i + m)2 + Amn2

Dome height and meridional curvatures at junction and apex are; respectively,

xo =- + 2mn

(2b)

(Sa)



and

dx2

a_0

n2 l-m
a l+m (3b)

Po

d2x "]

O,x 0

i i+ 3m

an m/l + 2m I + m
(3c)

It can be seen from equations (3b) and (3c) that m is limited to the range -1/3

to 1 for domes of positive Gaussian curvature. If m = 0; equation (i) describes

a family of ellipses. Figure 2(a) shows several Cassinian dome meridians with

various combinations of shape parameters m and n. Figures 2(b) to (e) contain

additional details of the geometry of Cassinian domes andj with figure 2(a); are

treated further in RE$_FLTS AND DISCUSSION.

ANALYTICAL PROCEDURE

All stress resultants and moments in the dome may be found from the quanti-

ties H and _ (fig. i). Differential equations appropriate to thin elastic

shells have been presented by Reissner (ref. 7) and are given here in modified

notation without proof :

(r_)"+ r(r_)'+ e(r_)+ _ = _i]

and i (_)_" + _' + ¢_ + _(rH) = _2

The primes denote differentiation with respect to the nondimensional meridional

coordinate {.

For a thin elastic shell with constant _rall thickness, internal pressure;

and material properties_ the coefficients in equations (4) are

5



a

P = -- cos q)
r

A = -a2paEh

T=P

-a 2 [(____) 2 ]= + vp_ Pe

= 12(1 - v 2) a2p8
Eh 5

+
h 2 = 6(i - v 2) _ r cos q)

Eh 5

(s)

Appendixes A_ B, and C present expressions for these coefficients for a gen-

eral shell of revolution, a numerical solution of equations (4), and methods for

calculating stresses and strains from (rH) and _. An electronic computer was

used to carry out this numerical solution.

RESVJI_SAND DISCUSSION

Geometry and Membrane Stresses

Selection of a dome of maximum efficiency for a given application may be

made %o some extent on the basis of a membrane analysis. However_ since the mem-

brane solution for pseudoelliptical shells may be significantly in error

(ref. 5)_ this selection should be considered as preliminary only. A more com-

plete analysis based on the analytical methods described in this report and in

reference 8 may be used to modify this initial selection of dome parameters.

Figures 2(b) to (f) are presented, therefore, as a description of the membrane

Cassinian dome that is useful in preliminary design.

In general_ three regions of the dome surface are of special interest: the

apex region, the knuckle region, and the junction region. The knuckle region is

not always as clearly defined as that of the apex or junction. In this report_

the knuckle region is defined as that interior section of the dome in which the

circumferential stress may reach a minimum value. This region is of particular

6



interest whenthis minimumstress is compressive, and buckling or high effective
stress may result.

Figure 2(b) presents data on the apex and junction regions. The nondimen-
sional radius of curvature at the apex maybe determined from the desired mem-
brane effective stress in that region by the formula

1 _ ae-z-_° (6)

aPo pa
2h

If i/ap o equals 1.752, membrane effective stress at the dome apex is equal to
that of a cylinder of equal thickness. The meridional curvature at the junction_

_, is one of the factors influencing edge deflection and rotation of the shell

and can be determined approximately from the desired junction deflection by the

membrane formula

_ u (v)
= (2 - ,,)

2Eh

Lines of constant minimum membrane circumferential stress O@_mi n are in-

cluded in figure 2(c) to aid in determining whether or not buckling may occur in

the dome. The left and right segments of the curves indicate minimum membrane

stresses occurring in the knuckle region. These sections of the curves are ob-

tained by cross-plotting results from analyses of many domes because no formula

for them is available. The central segments show stresses that are minimum at

the junction. These membrane stresses may be calculated from the meridional cur-

vature at the junction by the formula

_= 1

pa 2
h

(8)

Substituting equation (Sb) into (8) gives the relation between the membrane cir-

cumferential stress at the junction and the parameters m and n. Often_ _e_min

and _e_o are the most important considerations in the preliminary selection of

a shallow dome. Figure 2(c) also shows the variation in dome height with m

and n.

Other observations concerning Cassinian dome geometry and membrane stresses

may be made from equation (I) and figures 2(a), (b), and (c):

(i) If m = -0.355, the dome is flat at the apex for all values of n, and

apex stresses are theoretically infinite.

(2) In figure 2(a), the case with m = -0.190 and n = 1.167 is shown.

This is the shallowest Cassinian dome with no membrane compression and with apex

effective stress less than or equal to that in a membrane cylinder of equal

thickness.



(5) If m = O, the domeis ellipsoidal, and n equals the ratio of the ra-
dial semiaxis to the axial semiaxis. For this case, if n = !.0, the domeis
hemispherical. The eliipsoidal domeis the shallowest Cassinian domefor a given
value of apex curvature and the deepest Cassinian domefor a given value of junc-
tion curvature.

In figure 2(a), the case with m = 0 and n = !._i_ is shown. This is the
shallowest ellipsoidal shape without membranecompression.

(_) If m = !.0, meridional curvature at the junction is zero for all values
of n. These domesterminate in a section of a cylinder and have the largest
nondimensional membranejunction deflection _/(pa2/2_h). In figure 2(a), the
case with m = 1.0 and n = 1.9 is illustrated. This is the shallowest of the
Cassinian domeswith zero junction curvature and no membranecompression. The
meridians with m = !.0 and n _ 1.0 and 3.0 are included to indicate the wide
variety of shapes possible.

(5) If n = 0, the Cassinian equations describe a cylinder for all values
of m.

When ap--_ and i/aPo have been calculated using equations (6) and (7), m
maybe determined without the nonlinear interpolation required in figure 2(b).
Using equations (3b) and (3c) gives

i - m (i + 3m) 2 = (aPo)2(a_)_ (9)
i + 2m (I + m) 3

Figure 2(d) shows the variation in m with (aPo)2(a_). Ambiguity is eliminated

by determining the sign of m from figure 2(b)_ n may then be calculated from

equation (_b) or (3c).

Figure 2(e) presents the variation in dome surface area and volume with m

and n. The derivation of the equations for these quantities is given in appen-

dix A.

Maximum membrane effective stresses, normaiizedwith respect to the effec-

tive stress in a membrane cylinder, are given in figure 2(f). The regions in

which these stresses occur are noted. It can be seen that, for most Cassinian

domes of interest; knuckle region stresses are important because of their influ-

ence on buckling rather than for their contribution to the maximum membrane ef-

fective stress. In many applications_ the dome stresses shorn in this figure

plus the membrane stresses in the structure adjoining the dome will be modified

significantly by discontinuities.

In summary_ the following procedure may be used to determine preliminary

dome shape :

(i) For the given material, assume a dome wall thickness h.

(2) Calculate !/ap O and ap--_ from the desired apex effective membrane



stress and junction deflection, respectively, using equations (6) and (7).

(3) Select initial values for m and n, using figures 2(b) and (d).

(4) Using figure 2(c), check to see if this initial geometry satisfies pos-
sible requirements on _8,min and Xo, and modify i/ap o if necessary.

(S) Computevolume and weight of the total structure, using figure 2(e) for
domecalculations.

(6) Repeat steps (i) to (S) to determine other combinations of h, m, n, and
total structural weight. Select h for minimumweight.

(7) For complete stresses, perform detailed analysis using the described nu-
merical solution to the basic shell equations. Modify the wall thickness h as
necessary to remain within required maximumeffective stress levels. Small
changes in h should not affect overall structural weight significantly.

Stresses in a Family of Cylinder Closures

Figures 3 to 7 present theoretical results for the family of domeswith pa-
rameter m = i. Since these domesare characterized by zero meridional curvature
at the junction section, they are particularly suited for use as end closures on
cylinders of the samewall thickness.

The membranestress distributions for these domesare given in figure 3,
normalized with respect to the circumferential stress in a membranecyli1_der.
The smoothnessof the curves across the junction section indicates the minimal
character of any discontinuity effects that maybe present. The presence of com-
pressive stresses in domeswith the larger values of parameter n causes an in-
crease in effective stress in the knuckle regions.

Figures A(a) to (c) showthe variation in maximumeffective stresses in the
apex, knuckle, and junction regions with n and a/h for m = i. In addition,
critical effective stresses are included in figure 4(d). Again, these stresses
are normalized with respect to the effective stress in a membranecylinder. The
results for a/h from i0 to about 30 should be considered as approximations in
light of the thin-shell assumptions of this analysis. Figure 4(c) showsthat,
even though the meridional curvatures in domeand cylinder are equal at the junc-
tion, discontinuity effects are present, which indicates that meridiona! curva-
ture only at the junction does not determine free-edge deformations completely.

The variation in minimumcircumferential stress with n and a/h is given
in figure S. This information maybe helpful in the design of ring stiffeners to
prevent wrinkling or buckling of the domewall.

Figures 6 and 7 give principal and effective stress distributions for domes
with m = 1.0, n = 1.9_ and various values of a/h. These are the shallowest

Cassinian domes with zero junction curvature and no membrane compression. As in

figure A(c), discontinuity stresses in the junction region are noticeable, al-

though they decrease rapidly as a/h increases.



Experimental Results

A small Cylinder with a Cassinian domewas contour-machined from a 606i-T6
aluminum billet. The nominal outer diameter of the cylinder was 12.00 inches,
and the nominal wall thickmess was 0.062 inch. The domeshape parameters were
m = 1.0 and n = 1.9 (fig. 2(a)). Experimental results and curves of theoreti-
cal stresses are presented in figure 8 for this test specimen. Reasonable agree-
ment is obtained.

The test domewas selected because it combinedzero junction curvature and
zero minimummembranestress_ which eliminates curvature discontinuity and buck-
ling. The shallowest ellipsoida! domewith no membranecompression has shape pa-
rameters m = 0 and n = i.$i_. This ellipsoidal domeis comparedgeometrically
with the test domein figure 2(a). It can be seen that the two meridional curves
are similar in shape_although the depth of the test domeis larger than that of
the ellipsoidai dome. However_the test domeis nearly cylindrical for a portion
of its depth, and interstage structures between propellant tanks with this type
of domewould probably not extend from cylinder to cylinder. Also, the volume of
the test domeis about 28 percent greater than that of the ellipsoidal dome. _f-
fective stresses for the two domesare comparedin figure 9_ normalized with re-
spect to the membraneeffective stress in the adjoining cylinders. The maximum
effective stress ratio arising from the e!lipsoidal domeis 1.076 against 1.017
for the cylinder with the zero junction curvature dome. Thus, the theoretical
yield pressure for the cylinder with the test domeis about 6 percent higher than
that obtained using the comparable ellipsoidal dome. There is also considerably
less bending in the knuckle region of the test d_me_although apex stresses are
higher but not critical. Figu_res 8 and 9 are discussed in reference i0 also.

CONCLUSIONS

Geometric properties and elastic stress distributions for Cassinian domes
have been presented_ and the following conclusions are drachm:

!. The Cassinian domecan be used to provide a family of cylinder closures
with a wide range of shapes and a minimumamount of discontinuity stress. In-
cluded in this range are hemispherical and eliipsoidal domes.

2. Becausethe equation of the meridional curve of a Cassinian domecontains
two parameters; much flexibility in meeting design conditions is possible.

3. Although matching the membraneedge deflections of the domeand adjoining
structure reduces discontinuity effects considerably, bending momentsand shears
may still be present because of the approximate character of the membraneanal-
ysis.

A. Maximumeffective stresses occur at the domeapex or in the region of the
junction of the domeand adjoining structure in the majority of domeshapes of
interest. Interior stresses are usually important only if they are compressive
and may lead to buckling.

i0



5. Testing of a fabricated Cassinian domeshowsgood agreement between ex-
perimental and theoretical stresses.

Lewis Research Center
National Aeronautics and SpaceAdministration

Cleveland_ 0hio_ March 13_ 1963
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APPENDIXA

CALCULATION OF SHELL DATA

Station Coordinates and Curvatures

Since the basic differential equations (4) governing thin-shell deformations

are to be solved using an equal-interval finite-difference method_ it is first

necessary to determine the coordinates of stations that divide the reference sur-

face meridian into equal increments of arc. Referring to figure 1 and equations

(1)_ (2a)_ and (2b) for z _x o gives

l_ma2 _a2(i + m) 2 4ntr2z j = xo - xj = x O - n - r2 + a

= = i

j j n2(x O - zj)

= tan -I Z_d(_ljmj

rj+ i = rj_ I + 2_o(A_)cos _j

A_SO_

rj = - 2(x o - zj) 2 + ma + a 2(1 + m) 2 + 4mn2(x o - zj) 2

j j rj _a2( 1
..a ]

+ m) 2 + 4mn2(x o - zj) 2

q0j = cot-i (d_) j

zj+ I = zj_ I + 2_o(A_)sin _j

(A2)

To begin the calculation of coordinates_ rl, _I_ and r2 are determined

from the boundary conditions on the meridian curve. Equations (AI) and (A2) are

then used to calculate the remaining coordinates. To avoid difficulties with

large values of dz/dr and dr/dz, equations (A2) are used when _ is larger

than _/4. In practice_ it is desirable to divide the shell meridian into incre-

ments of length _o(A_)/2 and then to use the odd-numbered stations. This pro-
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cedure will avoid incremental lengths that are alternately slightly larger and
slightly smaller than _o(A_).

To calculate the curvatures of the reference surface, the following equa-
tions are used when z _ Xo:

(}+P._.,1 = De,1 = Do = +
an _/i + 2m

(_T_s) (q_,i+l - _O-l)
p_,j = J = 2_o(A_) j = 2,_-i

T- _i-i
P_,7 - 2_o(a{)

sin qO$
= j = 2,j

PS,j rj

(A3)

When z > xo;

zj = Z j_ I + C_o(A_)

rj=a

_j = Y

=0
P_,j

i "3"+!_
Pe,j a

Coefficients in the Basic Differential Equations

For a general shell of revolution_ the coefficients in equations (4) are

given in reference 7 as
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and

(rV) = -

For constant internal pressure,

and

properties_ and with

r%p v d_

(rV) = pr2
2

PH = p sin

Therefore, for constant _all thickness_ internal pressure_ and material

s o = a, equations (A5) reduce to equations (5).

Dome Surface Area

The dome surface area (fig. l(a)) is

m

z j-i

j=2

Now

r2 _L_s = a(A_)

and

Therefore,

+ _ (A_) + (A6)

This equation is used to compute the dome surface areas shown in figure 2(e).

Dome Volume

The volume enclosed by the reference surface of a Cassinian dome (fig. i(a))
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is

or

a jo_a 2v = 2_ xr dr = _ x d(r 2)
Jo

Therefore

Let

and

v
= -jrn2

a3

r) -n2 (_) 2 _(= - m + i + m) 2 + 4mn2(_) 2

(_ax--)2 d(aX--)2 + 2_mn 2

i + m) 2 + _mn 2

(i + m) 2 =

%mn 2 =

Then

fo (oa-_ = -xn 2 jy ./_ d_ + _-_ m/_ dy
o

From reference ii and equation (3a)_-for _ > 0, equation (AT) becomes

(A7)

16



a-_= _ " - + Yo + @Y2o + _ln

or

v_ __(z - m) -/7 + _.m+ (Z + m)2
[z+ 5m + 2-Tm(z + 2m)]}in l+m

for m > 0

(As)

Taking the limit of v/a 5 as _ approaches zero,

v 2_
for m = 0

a3 Sn

(Ag)

For _ < 0, equation (A7) becomes

v f2n2yS°/2 1 [ _ cc _(_ 2_3Y0 + 1}aW= _ _ + _ - _o+ _2o+ _ _ - sin'Z2

or

v _](1 - m) _ + 2m [I 8m(l + 2m)1l(z + m)2 cos_Z +
+

8-7f_ L- (i + m) 2 JJ

_or m<O

(too)

Equations (AS), (A9), and (AI0) are used to compute the dome volumes given in

figure 2(e).
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APPENDIXB

SOLUTIONOFDIFFE_!AL EQUATIONS

At any station j on the middle surface meridian curve, equations (4) be-
c ome

,, ,
(rH) j + Pj(rH) + Oj(rH) +j . j Aj_j = _l,j

" ' + + rH) _2,_j + Tj_j @j_j Yj( J

(BI)

In finite-difference form, using central differences and incremental length (At),

(rH)o+ 1 - 2(rH) o + (rH)$_ 1
(rH) " -

a (at)2 '
(B_)

Substituting equations (B2) into (B!), with

aries, gives
j = i and J = O at the bound-

+ (A¢) gAj!3j = (A_)2XI,j

_J+l [i + _TJ] + _J [-2 + (A_)24'j] + _j-1 [12 _ (A_) r,-]2 -'J

+ (A{)2_j(r}I)j = (A{)2_2,j j = 2,5 - i

(_)

In matrix notation, with capital letters for 2 X 2 matrices and lower-case let-

ters for 2 × i matrices, equations (BS) become

A v, + + _ = gjj_J+l Bjyj _jYj-I ' a = 2,3' - 1 (_)

in which

iS



(rH) JlYj =

i + L@A!rj

2

Aj =

0

(A_)2ej
Bj = |z

+

L (m_)2yj

(A_)2AJ I = Fbl!'j

[=_L_A rj

2

Fj=
0 Z_L_

2

1 l_ L(_I_._' /_,d

a22_

bi2'il
b22_

°1
f22_j

Following the method of reference 8_ let

Yj = qj - PjYj+I

then

Yj-I = qj-i - Pj-lYj

and

Yj+I = p_l(qj _ yj)

Substituting equations (B6b) and (BCc) into (B4) gives

Ajp_I(qj - yj) + Bjyj + Fj(qj_l - Pj-lYj) = gj

or

(Bs)

(SSa)

(B6b )

(B6c)

19



(-AjP_ I + Bj - FjPj_I)y j + (Ajp_Iqj + Fjqj_l) = gj, j = 2,j - I

As is shownlater, Pj
j = j, but yj is not.

and

and qj are independent of the boundary conditions at
Therefore_

-AjP_IJ + Bj - FjPj_ I = 0

Ajp]Iqj + Fjqj_ I : gj,

(BT)

Solving equations (B7) for

and

Pj and qj results in

Pj = (Bj - FjPj_I )-I Aj

qj : PjA_!(gj - Fjqj_i) , j : 2,_ - i

}
General boundary conditions may be expressed as

(rH)l = k I - Jll(rH)2 - J12_2

91 : k 2 - J21(rH)2 - j22_2

(rH)_ = tI - rll(rH)__ I - r12__l

_ : t 2 - r21(rH)__ 1 - r22__ 1

Expressing equations (B9) in matrix form gives

(S9)

Yi = k - JY2 (m0a)

_= _y_yj t - -1 ( Slob)

Comparing (B6a) and (B!Oa) yieids

ql

(mz)

Using equations (B6b) and (Bl0b) results in

2O



O1_

in which

and

Then

Y7 = (I - _7_i)-i(t- RqT_I)

I equals the 2 × 2 identity matrix.

To expandequations(BGa),(_), (BII),and(m2)

Pj = [Pal,j PI2,j]

PlI,I = Jll

PI2,1 _ J12

P21,1 = J21

P22,1 = J22

PII,J = 7jall,j(b22,J - f22,jP22,j-l)

P12_j = -Nja22,j(b12_j - fll,jPl2_j-1 )

P21_J = -Njall_j(b21_j - f22_jP21_J-1 )

P22,j _ hja22_j(bll_J - fll,jPll,j-1 )

in which

and

ql_l _kl

q2,1 _ k2

ql,J _ PlIjJ(gl,Jall_j " fll,Jql,J-l) + P12-'_A_(g2,Ja22,j - f22jjq2,J-l)

q2,j _ P21"J(gl,Jall,J - fll,jql,J-i ) ÷ P22_J(g2,Ja22,j - f22,jq2,j-1)

(_i2)

into algebraic form_ let

(_z3)
-i

21



Finally_

(rH)] = _! - r21P12,__i - r22P22,__l)(t i - rllql,__l - r12q2,__i )

+ (rllPl2,__ I + ri2P22,__l)(t 2 - r2iql,__ ! - r22q2,__l_

_ = _i - rllPll,__ I - rl2P21,__l)(t 2 - r21ql;__l - r22q2,__l )

÷ (r21Pll;__ I - r22P21,__l)(t I - rllql,__ I - r12q2;__l) ]

in which

= [(i - rllPll,__ I - ri2P21,__i)(l - r2lP!2,__ l - r22P22,__l)

- (rllPl2,__ l + r12P22,__l)(r21Pll,__ l + r22P2i,__l)] -z
and

(rH)j : ql,j - PI!,j(rH)j+I - PI2,j@j+I

@j = q2,j - P21,j(rH)j+I - P22,j_j+i j = j - i,i

(B14)

To solve the shell equations:

(i) Calculate the elements of the A_ B_ F_ g_ J_ k_ R_ and t matrices_

using equations (BS) and (B9).

(2) Calculate the elements of the P and q matrices_ using equa-

tions (BI3) and traversing the shell meridian from station I to station j - i.

(3) Calculate (rH) and 9, using equations (BiA) and traversing the shell

meridian from station j to station 1.

It can be seen that the boundary conditions at station j are not used

until step (5). Therefore_ P and q are indeed independent of these boundary

conditions_ as previously assumed.
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APPENDIXC

CALCIILATIONOFSTRESSESANDSTRAINS

Referring to figure i and reference 7,

: v sin_ + H cos_ ---p__ r_o_ _ + (r_)N_

NO = (rH)' + rPH
_O

M 0 9' +
O\ I

(cl)

In finite-difference form_ for _o = a and for constant internal pressure, wall

thickness, and material properties, equations (CI) become

N_,j = _ rj sin _j + (rH)j2 rj

NS, j = prj sin qoj + 8_o(A_ ) rH)j+ I j-i

D [(_j+l - _,_-!) % cos% ]

MS'J = _o Z(h_) + s° rj

To calculate the stress resultants and couples at

j = 2_j - i

(cz)

j = i when r I = O, the

following procedure is used: Let W i represent the desired function and W 2

represent the function at the station a distance (Zks) from the apex along a me-
ridian 180 ° from the nominal meridian. Since the functions (C2) are even for a

closed shell,

W_2 = W E

2S



and

I

wi=o

Selecting the appropriate m_nerical differentiation formula from reference 12 for

the first derivative of a f_mction that is known at four points results in

, -2W_ 2 - 5W 1 + CW2 - W3

Wi - C(A%) - 0

Therefore_ for a closed dome_

A i
wl --E ws - Y % (cs)

Other bo_mdary conditions n_y be handled in a similar manner.

To calculate stresses and strains_ the following formu£as are used:

% {iJ--, h h 2
os

_0 M@

a_;, {is}=os T+6 h-_

ae_[is] = , is - of aO, isri_l _-s+°,,-
[ Jc.s os LOSj _s cs

_{,_i_:_ _,_s-_, _]
los] ,s [osj

{}eO, _s =_" i:;

OS ,$

(c,_)
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